
Recursion 
 

The recursive function is 

– a kind of function that calls itself, or 

– a function that is part of a cycle in the sequence of function calls. 

 

 
 

Let’s we want to find the factorial of a number: f(n) = n! We know that 

n! = 1 * 2 * 3 * … * (n – 1) * n 

For example, f(5) = 1 * 2 * 3 * 4 * 5. We also know that f(4) = 1 * 2 * 3 * 4. So  

f(5) = (1 * 2 * 3 * 4) * 5 = f(4) * 5 

 

The problem of calculating f(5) is reduced to the problem of calculating f(4): in 

order to find f(5) we first must find f(4) and then multiply the result by 5. This process 

can be continues like  

f(5) = f(4) * 5 = f(3) * 4 * 5 = f(2) * 3 * 4 * 5 = … 

 

How long shall we continue this process? We know that 0! = 1, but there is no 

sense for calculating factorial for negative numbers. The equality 0! = 1 or f(0) = 1 is 

called simple case or terminating case or base case. When we need to find f(0), we do 

not continue the reduction like f(0) = f(-1) * 0 because it has no sense, but simply 

substitute the value of f(0) by 1. So  

f(2) = f(1) * 2 = f(0) * 1 * 2 = 1 * 1 * 2 = 2 

 

A recursive function consists of two types of cases: 

 a base case(s) 

 a recursive case 

 

The base case is a small problem  

 the solution to this problem should not be recursive, so that the function is 

guaranteed to terminate 

 there can be more than one base case 

 

The recursive case defines the problem in terms of a smaller problem of the same 

type 

 the recursive case includes a recursive function call 

 there can be more than one recursive case 

 

From the definition of factorial we can conclude that  

n! = (1 * 2 * 3 * … * (n – 1)) * n = (n – 1)! * n 

f1 f1 f2 fn … 



If we denote f(n) = n! then f(n) = f(n – 1) * n. This is called recursive case. We 

continue the recursive process till n = 0, when 0! = 1. So f(0) = 1. This is called the base 

case. 

f(3) = f(2) * 3

f(1) * 2

f(0) * 1
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1*1*2*3 = 6
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E-OLYMP 1658. Factorial For the given number n find the factorial n! 

► The problem can be solved with for loop, but we’ll consider the recursive 

solution. To solve the problem, simply call a function fact(n). The value n ≤ 20, use 

long long type. 
 
long long fact(int n) 

{ 

  if (n == 0) return 1; 

  return fact(n-1) * n; 

} 

 

E-OLYMP 1603. The sum of digits Find the sum of digits of an integer. 

► Input number n can be negative. In this case we must take the absolute value of 

it (sum of digits for -n and n is the same). 

Let sum(n) be the function that returns the sum of digits of n.  

 If n < 10, the sum of digits equals to the number itself: sum(n) = n; 

 Otherwise we add the last digit of n to sum(n / 10); 

We have the following recurrence relation: 
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sum(123) = sum(12) + 3 = sum(1) + 2 + 3 = 1 + 2 + 3 = 6
 

 

E-OLYMP 2. Digits Find the number of digits in a nonnegative integer n. 

► Let digits(n) be the function that returns the number of digits of n. Note that 

sum of digits for n = 0 equals to 1. 

 If n < 10, the number of digits equals to 1: digits(n) = 1; 

 Otherwise we add 1 to digits(n / 10); 

We have the following recurrence relation: 
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Example: digits(246) = digits(24) + 1 = digits(2) + 1 + 1 = 1 + 1 + 1 = 3. 

 

E-OLYMP 3258. Fibonacci Sequence The Fibonacci sequence is defined as 

follows: 

a0 = 0 

a1 = 1 

ak = ak-1 + ak-2 

For a given value of n find the n-th element of Fibonacci sequence. 

► In the problem you must find the n-th Fibonacci number. For n ≤ 40 the 

recursive implementation will pass time limit. The Fibonacci sequence has the 

following form: 
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The biggest Fibonacci number that fits into int type is  

f46 = 1836311903 

For n ≤ 40 its enough to use type int. 

Let fib(n) be the function that returns the n-th Fibonacci number. We have the 

following recurrence relation: 
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int fib(int n) 

{ 

  if (n == 0) return 0; 

  if (n == 1) return 1; 

  return fib(n-1) + fib(n - 2); 

} 

 

E-OLYMP 273. Modular exponentiation Three positive integers x, n and m are 

given. Find the value of xn mod m. 

► Exponentiation is a mathematical operation, written as xn, involving two 

numbers, the base x and the exponent or power n. When n is a positive integer, 

exponentiation corresponds to repeated multiplication of the base: that is, xn is the 

product of multiplying n bases: xn = x * x * … * x. 

How to find xn if x and n are given? We can use just one loop with complexity 

O(n). Linear time algorithm will pass the time limit because n ≤ 107. 

Use long long type to avoid overflow. 

 
scanf("%lld %lld %lld", &x, &n, &m); 

res = 1; 

for (i = 1; i <= n; i++) 

  res = (res * x) % m; 

printf("%lld\n", res); 

https://www.e-olymp.com/en/problems/3258
https://www.e-olymp.com/en/problems/273


 

E-OLYMP 4439. Exponentiation Find the value of xn. 

► How can we find xn faster then O(n)? For example, 

x10 = (x5)2 = (x * x4)2 = (x * (x2) 2)2 

We can notice that x2n = (x2)n, for example x100 = (x2)50. 

For odd power we can use formula x2n+1 = x  * x2n, for example x11 = x  * x10. 

The recurrent formula gives us the O(log2n) solution: 
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int f(int x, int n) 

{ 

  if (n == 0) return 1; 

  if (n % 2 == 0) return f(x * x, n / 2); 

  return x * f(x, n - 1); 

} 

 

At the iterative implementation, the case x = 1 and n is a large integer should be 

processed separately. For example, if x = 1 and n = 1018, in order to calculate xn, 1018 

iterations should be performed and will give the Time Limit. 
 

E-OLYMP 1601. GCD of two numbers Find the GCD (greatest common divisor) 

of two nonnegative integers. 

► The greatest common divisor (gcd) of two integers is the largest positive 

integer that divides each of the integers. For example, gcd(8, 12) = 4. 

It is also known that gcd(0, x) = |x| (absolute value of x) because |x| is the biggest 

integer that divides 0 and x. For example, gcd(-6, 0) = 6, gcd(0, 5) = 5. 

To find gcd of two numbers, we can use iterative algorithm: subtract smaller 

number from the bigger one. When one of the numbers becomes 0, the other equals to 

gcd. For example, gcd(10, 24) = gcd(10, 14) = gcd(10, 4) = gcd(6, 4) = gcd(2, 4) = 

gcd(2, 2) = gcd(2, 0) = 2. 

If instead of “minus” operation we’ll use “mod” operation, calculations will go 

faster. 

a b

10 24

10 14

10 4

6 4

2 4

2 2

2 0

a b

2 9

2 7

2 5

2 3

2 1

1 1

1 0

9 mod 2 = 1

 
 

For example, to find GCD (1, 109) in the case of using subtraction, 109 operations 

should be performed. When using the module operation, one action is sufficient. 

 

https://www.e-olymp.com/en/problems/4439
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GCD of two numbers can be found using the formula: 

GCD (a, b) = 
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The loop implementation is based on the idea given in the last recurrence relation: 
while (b > 0) : 

compute a = a % b; 

swap the variables a and b; 

 
int gcd(int a, int b) 

{ 

  if (a == 0) return b; 

  if (b == 0) return a; 

  if (a >= b) return gcd(a % b, b); 

  return gcd(a, b % a); 

} 

 

or 

 
int gcd(int a, int b) 

{ 

  return (b) ? gcd(b,a % b) : a; 

} 

 

E-OLYMP 1602. LCM of two integers Find the LCM (least common multiple) 

of two integers. 

► The Least Common Multiple (LCM) of two integers a and b is the smallest 

positive integer that is evenly divisible by both a and b. For example, LCM(2, 3) = 6 

and LCM(6, 10) = 30.  

To find the least common multiple, use the formula: 

GCD (a, b) * LCM (a, b) = a * b 

where from 

LCM (a, b) = a * b / GCD (a, b) 

Since a, b < 2 * 109, then when multiplying the value a * b can go beyond the type 

int. When calculating, use the type long long. 

 

Consider the numbers from the sample: 

GCD (42, 24) * LCM (42, 24) = 42 * 24, 

where from 

LCM (42, 24) = 42 * 24 / GCD (42, 24) = 42 * 24 / 6 = 168 

 
long long lcm(long long a, long long b) 

{ 

https://www.e-olymp.com/en/problems/1602


  return a / gcd(a, b) * b; 

} 

 

 

What do the next functions do (calculate): 

 

Quiz 1 
 
int f(int n) 

{ 

  if (n == 0) return 0; 

  return f(n-1) + n; 

}  

 

Quiz 2 
 
int f(int n) 

{ 

  if (n == 0) return 0; 

  return f(n-1) + 1; 

} 

 

Quiz 3 
 
int f(int n) 

{ 

  if (n == 0) return 1; 

  return f(n-1) * 2; 

} 

 

Quiz 4 
 
int f(int n) 

{ 

  if (n == 0) return 0; 

  return f(n-1) + 5; 

} 

 

What will be printed with the next code 

 

Quiz 5 
 
#include <stdio.h> 

 

void f(int n) 

{ 

  if (n == 0) return; 

  printf("%d ",n); 

  f(n-1); 

} 

 

int main(void) 

{ 

  int n; 

  scanf("%d",&n); 



  f(n); 

  return 0; 

} 

 

Quiz 6 
 
#include <stdio.h> 

 

void f(int n) 

{ 

  if (n == 0) return; 

  f(n-1); 

  printf("%d ",n); 

} 

 

int main(void) 

{ 

  int n; 

  scanf("%d",&n); 

  f(n); 

  return 0; 

} 

 

Quiz 7 
 
#include <stdio.h> 

 

int f(int x, int y) 

{ 

  if (x == 0) return y; 

  return f(x-1,y) + 1; 

} 

 

int main(void) 

{ 

  int a, b; 

  scanf("%d %d",&a,&b); 

  printf("%d\n",f(a,b)); 

  return 0; 

} 

 


