
Recursion

The recursive function is

– a kind of function that calls itself, or

– a function that is part of a cycle in the sequence of function calls.

Let’s we want to find the factorial of a number: f(n) = n! We know that

n! = 1 * 2 * 3 * … * (n – 1) * n

For example, f(5) = 1 * 2 * 3 * 4 * 5. We also know that f(4) = 1 * 2 * 3 * 4. So

f(5) = (1 * 2 * 3 * 4) * 5 = f(4) * 5

The problem of calculating f(5) is reduced to the problem of calculating f(4): in

order to find f(5) we first must find f(4) and then multiply the result by 5. This process

can be continues like

f(5) = f(4) * 5 = f(3) * 4 * 5 = f(2) * 3 * 4 * 5 = …

How long shall we continue this process? We know that 0! = 1, but there is no

sense for calculating factorial for negative numbers. The equality 0! = 1 or f(0) = 1 is

called simple case or terminating case or base case. When we need to find f(0), we do

not continue the reduction like f(0) = f(-1) * 0 because it has no sense, but simply

substitute the value of f(0) by 1. So

f(2) = f(1) * 2 = f(0) * 1 * 2 = 1 * 1 * 2 = 2

A recursive function consists of two types of cases:

 a base case(s)

 a recursive case

The base case is a small problem

 the solution to this problem should not be recursive, so that the function is

guaranteed to terminate

 there can be more than one base case

The recursive case defines the problem in terms of a smaller problem of the same

type

 the recursive case includes a recursive function call

 there can be more than one recursive case

From the definition of factorial we can conclude that

n! = (1 * 2 * 3 * … * (n – 1)) * n = (n – 1)! * n

f1 f1 f2 fn …

If we denote f(n) = n! then f(n) = f(n – 1) * n. This is called recursive case. We

continue the recursive process till n = 0, when 0! = 1. So f(0) = 1. This is called the base

case.

f(3) = f(2) * 3

f(1) * 2

f(0) * 1

1

1*1*2*3 = 6









1)0(

*)1()(

f

nnfnf

base case

recursive case

E-OLYMP 1658. Factorial For the given number n find the factorial n!

► The problem can be solved with for loop, but we’ll consider the recursive

solution. To solve the problem, simply call a function fact(n). The value n ≤ 20, use

long long type.

long long fact(int n)

{

 if (n == 0) return 1;

 return fact(n-1) * n;

}

E-OLYMP 1603. The sum of digits Find the sum of digits of an integer.

► Input number n can be negative. In this case we must take the absolute value of

it (sum of digits for -n and n is the same).

Let sum(n) be the function that returns the sum of digits of n.

 If n < 10, the sum of digits equals to the number itself: sum(n) = n;

 Otherwise we add the last digit of n to sum(n / 10);

We have the following recurrence relation:

sum(n) =








10,

10,10%)10/(

nn

nnnsum

sum(123) = sum(12) + 3 = sum(1) + 2 + 3 = 1 + 2 + 3 = 6

E-OLYMP 2. Digits Find the number of digits in a nonnegative integer n.

► Let digits(n) be the function that returns the number of digits of n. Note that

sum of digits for n = 0 equals to 1.

 If n < 10, the number of digits equals to 1: digits(n) = 1;

 Otherwise we add 1 to digits(n / 10);

We have the following recurrence relation:

digits(n) =








10,1

10,1)10/(

n

nndigits

https://www.e-olymp.com/en/problems/1658
https://www.e-olymp.com/en/problems/1603
https://www.e-olymp.com/en/problems/2

Example: digits(246) = digits(24) + 1 = digits(2) + 1 + 1 = 1 + 1 + 1 = 3.

E-OLYMP 3258. Fibonacci Sequence The Fibonacci sequence is defined as

follows:

a0 = 0

a1 = 1

ak = ak-1 + ak-2

For a given value of n find the n-th element of Fibonacci sequence.

► In the problem you must find the n-th Fibonacci number. For n ≤ 40 the

recursive implementation will pass time limit. The Fibonacci sequence has the

following form:

0

0

1

1

1

2

2

3

3

4

5

5

fi

i

8

6

13

7

21

8

34

9

55

10

...

...

The biggest Fibonacci number that fits into int type is

f46 = 1836311903

For n ≤ 40 its enough to use type int.

Let fib(n) be the function that returns the n-th Fibonacci number. We have the

following recurrence relation:

fib(n) =














0,0

1,1

1),2()1(

n

n

nnfibnfib

int fib(int n)

{

 if (n == 0) return 0;

 if (n == 1) return 1;

 return fib(n-1) + fib(n - 2);

}

E-OLYMP 273. Modular exponentiation Three positive integers x, n and m are

given. Find the value of xn mod m.

► Exponentiation is a mathematical operation, written as xn, involving two

numbers, the base x and the exponent or power n. When n is a positive integer,

exponentiation corresponds to repeated multiplication of the base: that is, xn is the

product of multiplying n bases: xn = x * x * … * x.

How to find xn if x and n are given? We can use just one loop with complexity

O(n). Linear time algorithm will pass the time limit because n ≤ 107.

Use long long type to avoid overflow.

scanf("%lld %lld %lld", &x, &n, &m);

res = 1;

for (i = 1; i <= n; i++)

 res = (res * x) % m;

printf("%lld\n", res);

https://www.e-olymp.com/en/problems/3258
https://www.e-olymp.com/en/problems/273

E-OLYMP 4439. Exponentiation Find the value of xn.

► How can we find xn faster then O(n)? For example,

x10 = (x5)2 = (x * x4)2 = (x * (x2) 2)2

We can notice that x2n = (x2)n, for example x100 = (x2)50.

For odd power we can use formula x2n+1 = x * x2n, for example x11 = x * x10.

The recurrent formula gives us the O(log2n) solution:

nx =

 












 

0,1

 ,

 ,

1

2/2

n

is oddnxx

is evennx

n

n

int f(int x, int n)

{

 if (n == 0) return 1;

 if (n % 2 == 0) return f(x * x, n / 2);

 return x * f(x, n - 1);

}

At the iterative implementation, the case x = 1 and n is a large integer should be

processed separately. For example, if x = 1 and n = 1018, in order to calculate xn, 1018

iterations should be performed and will give the Time Limit.

E-OLYMP 1601. GCD of two numbers Find the GCD (greatest common divisor)

of two nonnegative integers.

► The greatest common divisor (gcd) of two integers is the largest positive

integer that divides each of the integers. For example, gcd(8, 12) = 4.

It is also known that gcd(0, x) = |x| (absolute value of x) because |x| is the biggest

integer that divides 0 and x. For example, gcd(-6, 0) = 6, gcd(0, 5) = 5.

To find gcd of two numbers, we can use iterative algorithm: subtract smaller

number from the bigger one. When one of the numbers becomes 0, the other equals to

gcd. For example, gcd(10, 24) = gcd(10, 14) = gcd(10, 4) = gcd(6, 4) = gcd(2, 4) =

gcd(2, 2) = gcd(2, 0) = 2.

If instead of “minus” operation we’ll use “mod” operation, calculations will go

faster.

a b

10 24

10 14

10 4

6 4

2 4

2 2

2 0

a b

2 9

2 7

2 5

2 3

2 1

1 1

1 0

9 mod 2 = 1

For example, to find GCD (1, 109) in the case of using subtraction, 109 operations

should be performed. When using the module operation, one action is sufficient.

https://www.e-olymp.com/en/problems/4439
https://www.e-olymp.com/en/problems/1601

GCD of two numbers can be found using the formula:

GCD (a, b) =





















baaba

babba

ab

ba

),mod,GCD(

),,modGCD(

0,

0,

,

or the same

GCD(a, b) =








0),mod,GCD(

0,

bbab

ba

The loop implementation is based on the idea given in the last recurrence relation:
while (b > 0) :

compute a = a % b;

swap the variables a and b;

int gcd(int a, int b)

{

 if (a == 0) return b;

 if (b == 0) return a;

 if (a >= b) return gcd(a % b, b);

 return gcd(a, b % a);

}

or

int gcd(int a, int b)

{

 return (b) ? gcd(b,a % b) : a;

}

E-OLYMP 1602. LCM of two integers Find the LCM (least common multiple)

of two integers.

► The Least Common Multiple (LCM) of two integers a and b is the smallest

positive integer that is evenly divisible by both a and b. For example, LCM(2, 3) = 6

and LCM(6, 10) = 30.

To find the least common multiple, use the formula:

GCD (a, b) * LCM (a, b) = a * b

where from

LCM (a, b) = a * b / GCD (a, b)

Since a, b < 2 * 109, then when multiplying the value a * b can go beyond the type

int. When calculating, use the type long long.

Consider the numbers from the sample:

GCD (42, 24) * LCM (42, 24) = 42 * 24,

where from

LCM (42, 24) = 42 * 24 / GCD (42, 24) = 42 * 24 / 6 = 168

long long lcm(long long a, long long b)

{

https://www.e-olymp.com/en/problems/1602

 return a / gcd(a, b) * b;

}

What do the next functions do (calculate):

Quiz 1

int f(int n)

{

 if (n == 0) return 0;

 return f(n-1) + n;

}

Quiz 2

int f(int n)

{

 if (n == 0) return 0;

 return f(n-1) + 1;

}

Quiz 3

int f(int n)

{

 if (n == 0) return 1;

 return f(n-1) * 2;

}

Quiz 4

int f(int n)

{

 if (n == 0) return 0;

 return f(n-1) + 5;

}

What will be printed with the next code

Quiz 5

#include <stdio.h>

void f(int n)

{

 if (n == 0) return;

 printf("%d ",n);

 f(n-1);

}

int main(void)

{

 int n;

 scanf("%d",&n);

 f(n);

 return 0;

}

Quiz 6

#include <stdio.h>

void f(int n)

{

 if (n == 0) return;

 f(n-1);

 printf("%d ",n);

}

int main(void)

{

 int n;

 scanf("%d",&n);

 f(n);

 return 0;

}

Quiz 7

#include <stdio.h>

int f(int x, int y)

{

 if (x == 0) return y;

 return f(x-1,y) + 1;

}

int main(void)

{

 int a, b;

 scanf("%d %d",&a,&b);

 printf("%d\n",f(a,b));

 return 0;

}

